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Numerical solution of the steady-state inviscid Burgers’ equation (a’)’ =0 on (0, l), 
u(O) = g,, u(1) =g, (go #g,), is considered. To obtain the physically relevant discontinuous 
solution of this problem, the equation is singularly perturbed by adding a small amount of 
viscosity: --ELI” + (u’)‘=O. A “cell-entered” finite-difference scheme that uses two points for 
the inviscid part and four points for the viscous part is proposed. The overdetermined non- 
linear system that results is solved by a homotopy based on the Newton linearizer and a linear 
programming algorithm used to solve I, problems. Difficulties in capturing interior layers cen- 
tered at node points are observed. However, the computational results for interior layers cen- 
tered between node points and for boundary layers show accurate nonoscillatory solutions 
with discontinuities captured in one cell on both coarse and line grids. The amount of artificial 
viscosity required to obtain these solutions is small (E< 10m9) compared to the amount of 
artificial viscosity required by standard methods. A partial proof of pointwise and L,(O, 1) 
convergence of the linear-spline interpolant of the numerical solution to the inviscid solution 
E/h + 0 and h + 0 is given for one case. 0 1988 Academic Press, Inc. 

1. INTRODUCTION 

In solving systems of conservation laws, producing accurate nonoscillatory solu- 
tions that can be efficiently computed has been a persistent problem. An apprecia- 
tion of the important role played by the L, norm and its discrete analogue, the 1, 
norm, in the analysis of numerical methods for solving conservation laws has been 
growing [ll, 14, 15, IS]. A major advance was made by Harten [8,9], who used 
the L, norm as a guide for constructing TVD schemes (see also [ 131). In these 
schemes, the L, norm guides the choice of functions and parameters but is not 
otherwise a fundamental part of the solution algorithm. When the L, or I, norm is 
accepted as a basis for the solution algorithm, the numerical problem becomes a 
problem in mathematical programming rather than a problem in traditional matrix 
algebra. The I, procedure presented in this paper is a first step in this direction. 

We consider here the steady-state inviscid Burgers’ equation 
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with the boundary conditions 

u(O) =go> u(l)=g, (go Z&Y,). 

The physically relevant solution of (1.1) is the pointwise limit as E -+ 0 of the 
solution of the singularly perturbed problem 

-&Uv+(U2)‘=0 on (0,l) (1.2a) 

40) = go, u(l)=g,. (1.2bg 

Both standard and compact three-point central difference schemes typically produce 
oscillation and nonunique solutions for small E [6, 12,201. We recall for the reader 
the severity of the oscillatory behavior by the following set of examples. Define an 
equally spaced mesh by 

xi = ih, i = 0, 1, . . . . n, (1.3) 

where h = l/n. Let ui be the numerical solution at xi. Discretize problem (1.1) by 
the three-point “node-centered” finite-difference scheme 

& 
-Ui-1+2Uj-Uj+l Uf+l 4-1 

h* + = 2h 0, i= 1, 2, - . . . . n 1, (L4a) 

with 

uo=go, %=&?I. 

System (1.4) with n = 100 and 

go= 1, g1=0 (E.5) 

was solved for E = 10Pk, k = 1, 2, . . . . 10, with initial ui = 1 -xi for each E. For 
boundary conditions (1.5), the inviscid solution of (1.1) is 

1, 

u(x)= o 

L 

Odx<l, 

x= 1. 

The exact solution of the viscous problem (1.2), (1.5) is 

U(X) = c tanh(c( 1 -X)/E (I.71 

for c such that c tanh(c/s) = 1 (boundary layer at x = 1 - for small E). Convergence 
of the numerical solution was deemed to have occurred when the relative I, error 
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TABLE I 

Comparison of the Solution u, of the Three-Point Node-Centered Central-Difference 
System (1.4), (1.5) with the Inviscid Solution (of (l.l), (1.5); “Inv. sol.“) 

in the Boundary Layer (n = 100, Initial u, = 1 -xi for Each E). 

X 

0.94 0.95 0.96 0.97 0.98 0.99 

\ 
10-l 0.5366 0.4616 0.3795 0.2909 0.1971 0.0995 
lo-* 1.0000 1.0000 1.0000 0.9999 0.9820 0.7321 
1o-3 0.8589 1.1491 0.7781 1.2176 0.6329 1.3177 
10-4 0.3876 1.4870 0.3239 1.5027 0.2367 1.5196 
1o-5 0.2582 5.7184 0.2115 5.7203 0.1503 5.7223 
10-6 0.2462 50.672 0.2011 50.672 0.1423 50.672 

Inv. sol. 1 1 1 1 1 1 

Note. The entries in the table are the values of the ui. 

between the current solution values U? and the values up” of the solution on the 
previous Newton iteration was less than 0.5 * lo-“. The ui in the boundary layer 
at x = 1- for E = 10Pk, k = 1, 2, . . . . 6, are presented in Table I. (These results and all 
other computational results presented in this paper were obtained in double-preci- 
sion arithmetic on an IBM 370 using the convergence criterion involving expression 
(1.8) described above.) The odd-even uncoupling produced by the discretization 

of the inviscid term (u2)’ is responsible for the increasing oscillation seen in the 
numerical results as E goes from lop3 to 10P6. 

At the cost of increased computing time and perhaps some bias in the discrete 
solution, oscillation can be reduced by using line or stretched grids, ‘artificial 
viscosity, upwinding [6, 121, or more refined schemes such as TVD and EN0 
schemes [8,9, 10, 131. The approach discussed in the present paper differs from 
these standard approaches. Here, a I1 mathematical programming procedure is 
applied to an overdetermined “cell-centered” finite-difference system to produce a 
solution. 

2. CELL-CENTERED FINITE-DIFFERENCE SCHEMES 

We choose to discretize problem (1.2) on the equally spaced mesh defined by 
(1.3) using a four-point difference scheme for the viscous term --Eu” and a two- 
point difference scheme for the inviscid term (u2)‘, both schemes being centered at 
the midpoint of the cell (xi, xi+ 1) and having second-order accuracy there: 
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& 
-3g,+7u,-5u,+u,+u:-g~=o 

2h2 h 
(first cell), 

i = 1, 2, . . . . n - 2, 
E 

-Uj-1+Ui+Ui+l-Uj+2 Uf+l-Uf 
2h2 

+ 
h 

= 0, 
(interior cells) 

(Lib) 

& 
u,-,-5u,-,+7u,-,-3g,+g:--~_, 

2h2 h 
=o (last cell). 

The two-point cell-centered difference scheme 
2 2 

Ui+l-Ui 

h 

used in Eqs. (2.1) for the inviscid term (u’)’ does not have the odd-even uncoupIi~~ 
and resulting oscillatory behavior of the three-point node-centered scheme (1.4). 
This type of discretization for the inviscid term, often called a “bidiagonal” scheme, 
has been proposed and investigated in [S, 16, 211. 

While Eqs. (2.1) have the advantage of suppressing odd-even uncoupling (an 
doing so without upwinding or, as will be seen in Section 4, appreciable artificial 
viscosity), they form an overdetermined system. There are n equations for the n - ? 
unknowns ui, i = 1, 2, . . . . n - 1. In such a situation, one tends to attempt to solve the 
system first by least-square fitting, which will be done in the next section. 
conclude the present section with some comments on why the overdetermine 
nature of system (2.1) should not come as a surprise. 

The inviscid problem (1.1) is overdetermined in the sense that it has no strong 
(continuous) solution when g, # g, . System (2.1), (1.4b) is a numerical approxima- 
tion of (1.2), which, for small E, is a singular perturbation of (1.1). That (2.1), (Mb) 
is overdetermined is expected, since it is an approximation of the overdete~i~~d 
problem (1.1). The overdetermined nature of (1.1) is an indication that its solution 
should be sought in the class of discontinuous functions (weak solutions) rather 
than continuous functions (strong solutions). By the same token, the overdeter- 
mined nature of (2.1), (1.4b) is an indication that its solution should be soug 
among those functions that are effectively discontinuous on the grid being used. It 
will be seen in Section 3 that least-square fitting does not permit such solutions 
to be found. In Section 4, the Z1 algorithm that does find discontinuous solutions 
will be presented. 

3. THE LEAST-SQUARE SOLUTION PROCEDURE 

Solving system (2.1), (1.4b), (1.5) by least squares consists in finding the ui that 
minimize the sum of the squares of the residuals of system (2.11, 

n--l 

581;79/2-13 
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where ri is the left side (the residual) of the ith equation in set (2.1).The computa- 
tional algorithm used to minimize (3.1) consisted in iteratively creating the (linear) 
Newton system for (2.1), (1.4b), (1.5) and solving this linear system by least squares 
using the IMSL (Ed. 9) subroutine LLSQF. Results were obtained for the cases 
E= 10-k, k= 1, 2, . . . . 10, with 12 = 100. The ui in the boundary layer for E = 10Pk, 
k = 1, 2, . . . . 6, are presented in Table II. The initial ui were set equal to 1 -xi for 
each E. The final ui equal the values of the viscous solution u(xi) given in (1.7) with 
absolute error 6 10V3 for s = 10-l. As E decreases from lop2 to lo-“, however, the 
sharp boundary layer at x = 1~ does not develop. The ui equal fi with 
absolute error < 10e3 for E = lo-’ and with absolute error < lo-’ for E = 10-i’. 

The explanation for this behavior is as follows. As E + 0, system (2.1), (1.4b), 
(1.5) becomes the system 

2 2 
ui+ I- ui 

h 
= 0, i=o, 1, . ..) n- 1, (3.2a) 

uo= 1, 24, = 0. (3.2b) 

To solve this system by least squares is to minimize the sum of the squares of 
expressions (3.2a), that is, sum (3.1) with E = 0. Differentiating this sum with respect 
to each of the unknowns and setting the derivatives equal to zero yields the 
nonlinear system 

4ui(-u~~,+2u~-u~+,)=0, i=1,2 )...) n- 1, 240= 1, z&=0. (3.3) 

The exact solution of (3.3) is ~2 = 1 -xi or, choosing the positive square root, 
u,=~G. It can be proved that, as E + 0, the solution ui of the least-squares 
problem with nonzero E converges to d- for each i (for a sufficiently close 
initial guess). 

TABLE II 

Comparison of the Least-Squares Solution a, of the Four-Point Cell-Centered 
Finite-Difference System (2.1), (1.4b), (1.5) with the Inviscid Solution (of (l.l), (1.5); 

“Inv. sol.“) in the Boundary Layer (n = 100, Initial II, = 1 -xi for Each E). 

0.94 0.95 0.96 0.97 0.98 0.99 

10-i 0.5380 0.4631 0.3809 0.2921 0.1980 O.lOOfl 
10-Z 0.6061 0.5967 0.5824 0.5485 0.4821 0.2946 
1O-3 0.3123 0.2964 0.2795 0.2614 0.2368 0.208 1 
1o-4 0.2493 0.2283 0.2053 0.1792 0.1481 0.1103 
1om5 0.2454 0.2241 0.2005 0.1738 0.1420 0.1010 
10-f 0.2450 0.2231 0.2000 0.1733 0.1415 0.1001 

Inv. sol. 1 1 1 1 1 1 

Note. The entries in the table are the values of the up 
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The tight point-to-point coupling imposed by Eqs. (2.1) when E is small, which 
effectively requires that ui+ 1 z ui (cf. Eq. (3.2a)), and the tendency of least-square 
fitting to enforce Eqs. (2.1) approximately in all cells is responsible for this unexpec- 
ted result. Equations (2.1) are valid in most cells but are not even approximately 
valid in a “shocked” cell, that is, a cell where u undergoes a jump so large that it 
is perceived on the grid as a discontinuity. In such a cell, the finite-difference 
scheme is not a good approximation of the original equation. The desired algorith 
is one that locates the shocked cell and solves the system of n - 1 equations 
yk - 1 unknowns consisting of system (2.1) minus the equation for the shocked c 
Such a method is presented in the next section. 

~.THE II LINEAR PROGRAMMING SOLUTION PROCEDURE 

The I, procedure for solving the overdetermined system (2.1) consists in ending 
the ui that minimize the sum of the absolute values of the left sides of Eqs. (2.3 ), 

(cf. (3.1)). The minor change in the expression to be minimized produces a ra 
change in the algorithm and in the solution. 

References [ 14, 7, 17, 191 give information on the I, strategy and on linear and 
nonlinear programming algorithms for implementing it. A capacity to remain unaf- 
fected by outliers in the data is characteristic of I, procedures f7]. In the situation 
under consideration in this paper, this capacity translates into a capacity to permit 
the equation in the shocked cell not to be satisfied while requiring that the remain- 
ing equations be satisfied exactly. 

Expression (4.1) was minimized by an iterative method, each iteration of w 
consisted in creating the Newton system for Eqs. (2.1), (1.4b), (1.5) and solving 
system by the Barrodale-Roberts 1, algorithm [l, 21, a modification of the simplex 
method, as implemented in the IMSL (Ed. 9) subroutine RLLAV. Convergence of 
the numerical solution was deemed to have occurred when the relative I, error (1.8) 
was less than 0.5 * lo-“. The program was run for E = iO-k, k = 1,2, . ..) IO, with 
n = 100 and with initial ui = 1 -xi for each E. Convergence occurred for E = 10-l 
and 10P2 only. Excellent agreement between the ui and the values u(xi) of t 
viscous solution (1.7) of problem (1.2), (1.5) was observed for these two values of E. 

Since the I, procedure starting from ui = 1 -xi did not converge for E < 1W3, a 
homotopy was added. The I, procedure with homotopy consisted in applying the 
I, procedure described above successively for E = 10-k, k = 1, 2, ~.., with the initial ui 
for E = 10-l being I- xi and the initial ui for E = 10-k, k = 2, 3, . . . . being the solu- 
tion for the previous (next larger) E, namely, lo- k + ’ Convergence occurred for E 
as small as 10e9. Failure to reach a solution for E = IO-‘” was probably due to 
approaching the noise level of the computer. Values of ui in the boundary layer are 
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FIG. 1. Comparison of the II solution ui of system (2.1), (1.4b), (1.5) with the inviscid solution 
(of (l.l), (1.5)) in the boundary layer (n= 100, homotopy). 

plotted in Fig. 1 for E = 10-k, k = 1, 2, . . . . 9, and are listed in Table III for E = 10mk, 
k = 1, 2, . . . . 6. The absence of oscillation and overshooting in all of these I, solutions 
is remarkable. The differences between the ugg in Table III and the inviscid solution 
1 are observed to be O(E). This estimate is confirmed by the fact that ugg was equal 
to 1 - 25s for E = 10Pk, k = 7, 8, 9. The further the xi is from the discontinuity at 
x= l-, the faster the convergence is: the numerical results for E = 10Pk, 
k = 1, 2, . . . . 9, as a whole suggest that as E + 0 the difference between ~~~~~ and the 
inviscid solution 1 is 0(P). 

The ability of the I, procedure to solve a Burgers’ equation with an interior layer 
was also tested. The physically relevant solution of problem (1.1) with 

go=L g,=-1 (4.2) 

TABLE III 

Comparison of the I1 Solution ui of System (2.1), (1.4b), (1.5) with the Inviscid Solution 
(of l.l), (1.5); “Inv. sol.“) in the Boundary Layer (n = 100, Homotopy). 

0.94 0.95 0.96 0.97 0.98 0.99 

10-l 0.53805982 0.46317169 0.038096542 0.29219862 0.19804143 0.10000122 
10-Z 0.99979383 0.99912652 0.99630225 0.98436307 0.93424355 0.72998509 
1om3 1.00000000 0.99999999 0.99999961 0.99998420 0.99936759 0.91469566 
1o-4 1.00000000 1.OOOOOOOO 1.OOOOOOOO 0.99999998 0.99999374 0.99749688 
10-5 1.00000000 1.OoOOOOuO 1.00000000 1.00000000 0.99999994 0.99974997 
10m6 1.OOOOOOOO 1.00000000 1.OOOOOcKKl 1.00000000 1.OOOOOOOa 0.99997500 

Inv. sol. 1 1 1 1 1 1 

Note. The entries in the table are the values of the ui, 
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E 

: 

10-l 

10-p 

x 10-3 

t 10-Q TO lo-l5 

z 59 
99 35 

-1.0 1 L&Q---& 

FIG. 2. Comparison of the I, solution ui of system (2.1), (1.4b), (4.23 with the inviscid solution 
(of (l.l), (4.2)) in the interior layer (n = 99, homotopy). 

1, u(x)= -1 i > 
o<x<;:, 
:<xa. 

The solution of the viscous problem (1.2), (4.2) is 

U(X) = c tanh(c(0.5) -X)/E) 

for c such that c tanh(c/2e) = 1 (interior layer at x = i). System (2.1), (1.4b), (4.2) 
was solved for n = 99 (the case n = 100 is discussed below) by the I, proce 
homotopy starting from ui = 1 - 2x,. Convergence occurred for E = 10Pk, 
k = 1, 2, . . . . 15. Values of the ui near the interior layer at x = i are plotted in Fig. 2 
for F = 10Wk, k = 1, 2, . . . . 15, and are listed in Table IV for E = 10Sk, k= 1, 2, . . . . 6. 
The antisymmetry around x = 4 in the numerical solution correspon 
antisymmetry in the inviscid solution (4.3) and the viscous solution (4.4). The data 

TABLE IV 

Comparison of the I, Solution ui of System (2.1), (1.4b), (4.2) with the Inviscid Solution 
(of (l.l), (4.2); “Inv. sol.“) in the Interior Layer (n = 99, Homotopy). 

\ 8 x 47199 48199 49199 SO/99 51199 52199 

10-l 0.24810434 0.15089498 0.05064557 - .05064557 -.15089498 -.2481M34 
1o-2 0.97316110 0.88671763 0.54137960 -.54137060 -.88671763 -.97316110 
10m3 0.99996972 0.99877564 0.95053107 -.95053107 -.99877X% I .99996972 
1o-4 0.99999997 0.99998775 0.99505003 - .99505003 - .99998775 - 999999997 
1o-5 1.OOOOOooO 0.99999988 0.99950500 - .99950500 - .99999988 
1O-6 1.oooooooo 1.ooooOooo 0.99995050 -.99995050 - 1.ooQooooo 

Inv. sol. 1 1 1 1 1 1 

Note. The entries in the table are the values of the u,. 
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in Table IV show that the difference between the ui nearest the discontinuity, 
namely, z+, and us,,, and the corresponding values of the inviscid solution, namely, 
+ 1 and - 1, are U(E). The numerical results for E = 10Pk, k = 1,2, . . . . 15, as a whole 
suggest that as E -+ 0 the difference between ui and the value of the inviscid solution, 
+ 1 or - 1, is O(P), where m is the number of mesh units between xi and the dis- 
continuity at x = 4, rounded upward to the nearest integer (m = Ii- PI + 1). On the 
other hand, for large E (E = lo-‘, 10d2), there was excellent agreement between the 
ui and the values u(xi) of the viscous solution (4.4). 

For odd n, the discontinuity in the inviscid solution (4.3) is in the interior of a 
cell. The I, procedure, which identifies a shocked cell, performs excellently in this 
case. When n is even, however, the discontinuity is at a node point. This can be 
expected to create a problem for the procedure used here. For n = 100, the I, 
procedure for system (2.1), (1.4b), (1.5) with homotopy starting from ui= 1 - 2xi 
produced the following results. For E = lo-‘, the relative I, error (1.8) attained the 
value 0.6481 * lop7 on the 6th iteration and remained there on subsequent 
iterations. When the calculations were cut off on the 25th iteration, the ui coincided 
with the values u(xi) of the viscous solution (4.4) with absolute error <O.OOll. For 
E = 10Pk, k = 2, 3,4, 5, 6, the program results indicated (incorrectly) that the 
discontinuity was in the cell (0.61,0.62) but otherwise produced a good solution 
(antisymmetric around 0.615 and nonoscillatory). For E = 10Pk, k = 7, 8,9, 10, the 
algorithm placed the discontinuity in the last cell (0.99, 1.00) and produced ui= 1 
everywhere in the interior. The reason for this behavior is as follows. The numerical 
solution with the discontinuity in the cell (xd9, x50) just to the left of x = 1, namely, 
the solution 

1, OdiG49, 
uiz 

-1, 5O<i<lOO, (4.5) 

and the numerical solution with discontinuity in the cell (xSO, x5i) just to the right 
of x = $, namely, 

i 
1, O<i<50, 

Ui% 
-1, 51 di< 100, (4.6) 

produce one and the same minimum of (4.1) ( E assumed small). The I, procedure 
used here, which is not equipped to handle multiple solutions, cannot decide 
whether to ‘put the numerical discontinuity in the cell to the right or the cell to the 
left of x = i. In this unstable situation, the algorithm overshoots and shifts the 
shocked cell too far. Amending the algorithm so that it recognizes that both (4.5) 
and (4.6) are valid solutions will take care of this problem. The final numerical 
solution will be the average of these two solutions, namely, 

1, O<i<49, 
UiM 0, i=50, (4.7) 

-1, 51<i<lOO. 
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(Since the ri of expression (4.1) are nonlinear, the value of expression (4.1) at 
solution (4.7) may actually be larger than the value of expression (4.1) at t 
solutions (4.5) and (4.6)!) 

The ability of the I, procedure to perform well on coarse grids is suggested by the 
good performance seen above for small E. To give some additional feeling for how 
robust the procedure can be on coarse grids, the program was rerun with n = 9 a 
10 instead of y1= 99 and 100. For problem (2.1), (1.4b), (1.5) (discontinuity 
x = 1 -) with n = 10, the I, procedure with homotopy produced excellent solutions 
for e = 10ek, k = 1,2, . . . . 15. For problem (2. l), (1.4b), (4.2) (discontinuity a 
with n = 9, the procedure produced excellent results for E = 10mk, k = I, 2, ..~, 
the latter problem with n = 10, the procedure put the discontinuity in 
(0.5,0.6) just to the right of x = i and converged for E = 10Pk, k = 1, 2, . . . . 
final solution it produced was ui = 1, 1 < i < 5, and ui = - 1, 6 < i < 9. Thus 
cedure performed better for n = 10 than it did for n = 100. When compared 
results for n = 99 and IZ = 100, the results for n = 9 and n = 10 suggest that, in all 
cases of convergence to the “correct” solution, the difference between the numerical 
solution ui and the inviscid solution is O((E//Z)~), where m is the number of mesh 
units between the node under consideration and the discontinuity, rounded 
to the nearest integer. The results for problem (2.1), (1.4b), (1.5) with 12 = 
n = 100, which are typical, are presented in Fig. 3. In this figure, the slope 
error “curves” are seen to be approximately -m, as the relationship Iw,-, - 1 = 
c(s/h)” or, equivalently, log,, Ju, ~ m - 11 = ( -m)( - log,,(s/h)) + log c suggest 
distinction between data points for n = 10 (h =O.l) and n = 100 (h = 0.01) is 
since the points for these two cases coincide to within graphical accuracy. 

A final note in this section concerns the role of viscosity in the d, algori 
I, algorithm produces (in favorable cases) accurate approximations to 

FIG. 3. Plot Of log,,, IU,_,,--ll VS. -log,,(#z) for problem (2.1), (1.4b), (1.5) with n= 10 and 
fZ=iOO. 
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tally relevant solution of the inviscid equation for E as small as lo-‘, 10-15, and 
10-20, why not let E = 0 and solve the inviscid equation directly by the 1, procedure 
(just as the inviscid equation was solved in Section 3 by the least-square 
procedure)? The answer is that, for E = 0, the minimum of (4.1), namely, 1 gz - g:l/h, 
is attained at many solutions, including the solutions ui = go, i < k, ui = g,, i Z k + 1, 
for any k, 1 < k d y1- 1. A small amount of viscosity is the mechanism by which the 
1, procedure selects the physically relevant solution of the inviscid problem. 
(Viscosity is a mechanism by which the physically relevant solution can be defined 
in the first place-cf. [ll].) In contrast to the amount of artificial viscosity required 
by many currently available methods for solving inviscid problems, however, the 
“small amount” of viscosity required by the I, procedure is truly small: - 10-9u” 
or less. 

5. CONVERGENCE 

The numerical results presented above demonstrate the propriety of using a I, 
procedure to solve system (2.1). It is expected that pointwise and L,(O, 1) con- 
vergence of the linear-spline interpolant of the I, solution of (2.1), (1.4b) to the 
physically relevant solution of (1.1) as e/h + 0 and h + 0 can be proved using a 
complete search or branch-and-bound procedure for each h. One complete search 
involves checking a minimum of 2% solutions (n = l/h). Less voluminous proofs of 
convergence will have to be developed. They may be constructive proofs based on 
nonlinear I, procedures developed to handle the computational side of the problem 
(see Section 6). 

We present here a partial proof of the pointwise and L,(O, 1) convergence of the 
linear-spline interpolant of the I, solution of problem (2.1), (1.4b), (1.5) to the solu- 
tion of the inviscid problem (l.l), (1.5). Assume that the shocked cell is the last cell 
(x,-i, x,), that is, that the I, procedure results in solving system (2.1) without the 
last equation. From this system of n - 1 equations, create a new system of n - 1 
equations, the ith equation of which is the sum of the first i equations in the 
original system. In the new system, the only nonlinear term in the ith equation is 
uf/h. Use the quadratic formula on this ith equation to solve for ui in terms of uj, 
j# i. Select the root that is asymptotically closer to 1 and approximate the square 
root in the quadratic formula to 0(&/h). The solution of the resulting system of 
n - 1 linear equations for n - 1 unknown is 

ui = 1 + 0(&/h), l<idn-1. (5.1) 

(The computational results mentioned .in Section 4 suggest that a better result, 
namely, u, _ m = 1 + O((.s/h)m), could be achieved by a relined analysis.) Thus, 
pointwise convergence of the ui to the inviscid solution 1 as E/h + 0 is established. 
Let v denote the linear-spline interpolant of these ui with u(0) = 1 and v( 1) = 0. 
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Using (%I), it can be shown that the Li(O, 1) norm of the difference between u an 
the inviscid solution 1 satisfies the relationship 

i 
3 Iv(x) - 11 dx = 0(&/h) -I- 0(h). (5.2) 

Relations (5.1) and (5.2) are statements that u converges to the inviscid solution 
pointwise and in the L,(O, 1) norm as E/h -+ 0 and h 4 0. 

At first glance, Eq. (5.2) seems to suggest that, for fixed E, the error coul 
unbounded as h -+ 0. This is not the case. The computational results for E = 10-l 

and lop2 for various h indicate that the ui are 0(/r*) approximations of the viscous 
solution (1.7) or (4.4). The I, procedure thus solves not only the inviscid problem 
but also the viscous problem. This robustness is a distinct advantage, in spite of the 
fact that solving problems with significant viscosity by the 1, procedure is expected 
to be more expensive than solving them by standard procedures. 

6. PRQSPECTS 

The formal extension of the 1, procedure to solving systems of cell-centered finite- 
difference equations for steady-state and time-dependent conservation laws in one, 
two, and three space dimensions as well as other differential equations that 
solutions with sharp layers is easily carried. out. Whether convergence will occur 
remains to be seen. If convergence does occur, improvements will be 
make the procedure consistently accurate and cost-competitive with 
available methods. The Newton I, linear programming procedure used her 
expected to perform well only when the shocked cell identified on each 
procedure remains one and the same for many steps in a row, which wa 
in many of the numerical experiments for this paper. This procedure must even- 
tually be replaced by nonlinear I, algorithms such as those in [3, 171. Versions of 
these nonlinear algorithms that take into account the band structure and 
that our systems are only slightly overdetermined will have to be develope 
versions must be able to handle discontinuities that occur at node points. 

7. CONCLUSION 

The 1, procedure introduced in this paper produces accurate nonoscillatory solu- 
tions of the steady-state inviscid Burgers’ equation. The goal of research in the near 
future will be to deepen the understanding of the connection between the L, theory 
and I, numerical procedures and to determine the classes of problems to which the 
synthesis of partial differential equations and mathematical programming proposed 
here can be applied. 
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